
Ever wonder what makes Lisp so powerful?
Now you can find out for yourself-

And you don't even have to install anything on your computer to do it!

A COMIC BOOK
By Conrad Barski, M.D.

LISPERATI.COM

Emacs Lisp Version Turkish Version Ruby Version Haskell Version?!

1/17/08 Breaking News- Watch out for my new Super
Fantastic Expanded Lisp Comic Book/Text Book from No
Starch Press later this year! Travel to the Land of Lisp- Soon
in book form!!

Anyone who has ever learned to program in Lisp will tell you
it is very different from any other programming language. It is
different in lots of surprising ways- This comic book will let

mailto:lisperati@gmail.com
http://nostarch.com/
http://nostarch.com/
http://jpmoresmau.blogspot.com/2006/11/my-first-haskell-adventure-game.html
http://www.rubyquiz.com/quiz49.html
http://www.ileriseviye.org/Makale/lisperati-tr/
http://www.lisperati.com/casting-spels-emacs/html/casting-spels-emacs-1.html

you find out how Lisp's unique design makes it so powerful!

This tutorial has small bits of Lisp code written in

this font and color

...Simply copy these snippets into the prompt of a Lisp
compiler and by the time the tutorial is done you will have
your own text adventure game!

There are many great Lisp compilers out there that you can
use, but the easiest to use for this tutorial is Franz's Allegro
Common Lisp, a very powerful commercial Lisp that Franz,
Inc. has graciously made available through a telnet
environment HERE so you can try it out without installing
any software on your PC. Simply click on the link and you
browser will launch a telnet window that gives you everything
you need!

telnet://prompt.franz.com/
http://www.franz.com/
http://www.franz.com/

(Another Lisp I really like to use is the open-source CLISP,
which you might want to download if you know you'll be
spending more time with Lisp)

If you're using Allegro Common Lisp, please execute the
following from the Lisp prompt:

(setf tpl:*print-length* nil)

...Just copy the text from your browser, then right-click on the
telnet window and choose Paste. Don't worry too much about
this line- it just prevents Allegro from chopping off messages
printed by our text adventure game.

http://clisp.cons.org/

NEXT >>

Syntax and Semantics

Every computer language has code that is made up of syntax
and semantics. The syntax of a programming language is the
basic skeleton your program has to follow so that the
compiler knows what's what in your program, so it can tell
what's a function, a variable, etc. The semantics of a program
is the more "random" stuff, like the different commands you
have available and what variables you're allowed to look at at
any point in the program. The first thing that is special about
Lisp is that it has the simplest syntax of any major
programming language.

Basically, the Lisp syntax dictates that any text you give the
Lisp compiler has to be arranged into lists, which can be
nested into lists of lists or such as needed. The parenthesis
mark the beginning and end of each list:

file:///home/drcode/lisperati.com/syntax.html

Additionally, the Lisp compiler uses two modes when it
reads your code: A Code Mode and a Data Mode. When
you're in Data Mode, you can put anything you want into
your lists. However, the compiler first starts off reading your
code in Code Mode- In Code Mode, your lists need to be a
special type of list called a form:

A form is a list where the first symbol in the list has to be a
special word that the compiler can understand- Usually the
name of a function. In this case, the compiler will send the
other items of the list to the function as parameters. When it
reads the text for these parameters, it will usually assume that
they are also in Code Mode, unless you tell it to flip into data
mode.

<< PREVIOUS NEXT >>

file:///home/drcode/lisperati.com/data.html
file:///home/drcode/lisperati.com/index.html

Defining the Data for our Game World

In order to learn some more about forms, let's create a some
forms that create the data for our game world. First of all, our
game is going to have some objects in it that the player can
pick up and use- Let's define those objects:

(setf *objects* '(whiskey-bottle bucket frog chain))

Ok, now let's dissect this line an see what it means: Since a
Lisp compiler always starts reading things in Code Mode and
expects a form, the first symbol, setf, must be a command. In
this case, the command sets a variable to a value: The
variable is *objects* (Lispers like to put stars around the
names for global variables as a convention) and the value we
are setting it to is a list of the four objects. Now, since the list
is data (i.e. we don't want the compiler to try and call a
function called whiskey-bottle) we need to "flip" the compiler
into Data Mode when reading the list. The single quote in
front of the list is the command that tells the compiler to flip:

You may be wondering why the command is called setf... I'm
not sure why, actually, but you'll find that a lot of the
commands in Lisp have quirky names, since Lisp is such an
ancient language. This is actually somewhat useful, since the
Lisp versions of common commands have all kind of elegant
powers unique to Lisp and therefore the wacky names
prevent confusing vocabulary when comparing command in
Lisp to commands in other languages. The setf command, for
instance, has all kinds of clever abilities that we won't even
have a chance to touch on in this tutorial.

Now that we've defined some objects in our world, let's ramp

it up a step and define a map of the actual world itself. Here
is a picture of what our world looks like:

In this simple game, there will only be three different
locations: A house with a living room and an attic, along with
a garden. Let's define a new variable, called *map* that
describes this mini world:

(setf *map* '((living-room (you are in the living-room of a wizards house. there is a
wizard snoring loudly on the couch.)
 (west door garden)
 (upstairs stairway attic))
 (garden (you are in a beautiful garden. there is a well in front of you.)
 (east door living-room))
 (attic (you are in the attic of the wizards house. there is a giant
welding torch in the corner.)
 (downstairs stairway living-room))))

This map contains everything important that we'd like to
know about our three locations: a unique name for the
location (i.e. house, garden, and attic) a short description of
what we can see from there (stored in its own list within the
bigger list) , plus the where and how of each path into/out of
that place. Notice how information-rich this one variable is
and how it describes all we need to know but not a thing

more- Lispers love to create small, concise pieces of code
that leave out any fat and are easy to understand just by
looking at them.

Now that we have a map and a bunch of objects, it makes
sense to create another variable that says where each of these
object is on the map:

(setf *object-locations* '((whiskey-bottle living-room)
 (bucket living-room)
 (chain garden)
 (frog garden)))

Here we have associated each object with a location. Lists
such as this are, not surprisingly, called "association lists" in
Lisp. An association list is simply a list of lists where the first
item in each inside list is a "key" symbol that is associated
with a bunch of other data. Our *map* variable was also an
association list- The three keys in that case were living-room,
garden, and attic.

Now that we have defined our world and the objects in the
world, the only thing left to do is describe the location of the
player of the game:

(setf *location* 'living-room)

Now let's begin making some game commands!

<< PREVIOUS NEXT >>

Looking Around in our Game World

The first command we'd want to have is a command that tells
us about the location we're standing in. So what would a
function need to describe a location in a world? Well, it
would need to know the location we want to describe and
would need to be able to look at a map and find that location
on the map. Here's our function, and it does exactly that:

(defun describe-location (location map)
 (second (assoc location map)))

The word defun means, as you'd expect, that we're defining a
function. The name of the function is describe-location and it
takes two parameters: a location and a map. Since these
variables do not have stars around them, it means they are
local and hence unrelated to the global *location* and *map*
variables. Note that functions in Lisp are often more like
functions in math than in other programming languages: Just
like in math, this function doesn't print stuff for the user to
read or pop up a message box: All it does is return a value as
a result of the function that contains the description. Let's
imagine our location is in the living-room (which, indeed, it
is...).

file:///home/drcode/lisperati.com/syntax.html
file:///home/drcode/lisperati.com/looking.html

To find the description for this, it first needs to look up the
spot in the map that points to the living-room. The assoc
command does this and then returns the data describing the
living-room. Then the command second trims out the second
item in that list, which is the description of the living-room
(If you look at the *map* variable we had created, the snippet
of text describing the living-room was the second item in the
list that contained all the data about the living room...)

Now let's use our Lisp prompt to test our function- Again,
like all the text in

this font and color

in the tutorial, paste the following text into your Lisp prompt:

(describe-location 'living-room *map*)

==> (YOU ARE IN THE LIVING-ROOM OF A WIZARD'S HOUSE. THERE IS A WIZARD SNORING LOUDLY
ON THE COUCH.)

Perfect! Just what we wanted... Notice how we put a quote in

front of the symbol living-room, since this symbol is just a
piece of data naming the location (i.e. we want it read in
Data Mode) , but how we didn't put a quote in front of the
symbol *map*, since in this case we want the list compiler to
hunt down the data stored in the *map* variable (i.e. we want
the compiler to be in Code Mode and not just look at the
word *map* as a chunk of raw data)

The Functional Programming Style

You may have noticed that our describe-location function
seems pretty awkward in several different ways. First of all,
why are we passing in the variables for location and map as
parameters, instead of just reading our global variables
directly? The reason is that Lispers often like to write code in
the Functional Programming Style (To be clear, this is
completely unrelated in any way to the concept called
"procedural programming" or "structural programming" that
you might have learned about in high school...). In this style,
the goal is to write functions that always follow the following
rules:

1. You only read variables that are passed into the function or
are created by the function (So you don't read any global
variables)
2. You never change the value of a variable that has already
been set (So no incrementing variables or other such
foolishness)
3. You never interact with the outside world, besides
returning a result value. (So no writing to files, no writing
messages for the user)

You may be wondering if you can actually write any code
like this that actually does anything useful, given these brutal
restrictions... the answer is yes, once you get used to the
style... Why would anyone bother following these rules? One
very important reason: Writing code in this style gives your
program referential transparency: This means that a given
piece of code, called with the same parameters, always
positively returns the same result and does exactly the same
thing no matter when you call it- This can reduce
programming errors and is believed to improve programmer
productivity in many cases.

Of course, you'll always have some functions that are not
functional in style or you couldn't communicate with the user
or other parts of the outside world. Most of the functions later
in this tutorial do not follow these rules.

Another problem with our describe-location function is that
it doesn't tells us about the paths in and out of the location to
other locations. Let's write a function that describes these
paths:

(defun describe-path (path)
 `(there is a ,(second path) going ,(first path) from here.))

Ok, now this function looks pretty strange: It almost looks
more like a piece of data than a function. Let's try it out first
and figures out how it does what it does later:

(describe-path '(west door garden))

==> (THERE IS A DOOR GOING WEST FROM HERE.)

So now it's clear: This function takes a list describing a path
(just like we have inside our *map* variable) and makes a
nice sentence out of it. Now when we look at the function
again, we can see that the function "looks" a lot like the data
it produces: It basically just splices the first and second item
from the path into a declared sentence. How does it do this?
It uses back-quoting!

Remember that we've used a quote before to flip the compiler
from Code Mode to Data Mode- Well, by using the the back-
quote (the quote in the upper left corner of the keyboard) we
can not only flip, but then also flop back into Code Mode by
using a comma:

This "back-quoting" technique is a great feature in Lisp- it
lets us write code that looks just like the data it creates. This
happens frequently with code written in a functional style: By
building functions that look like the data they create, we can
make our code easier to understand and also build for
longevity: As long as the data doesn't change, the functions
will probably not need to be refactored or otherwise changed,
since they mirror the data so closely. Imagine how you'd
write a function like this in VB or C: You would probably
chop the path into pieces, then append the text snippets and
the pieces together again- A more haphazard process that
"looks" totally different from the data that is created and
probably less likely to have longevity.

Now we can describe a path, but a location in our game may

have more than one path, so let's create a function called
describe-paths:

(defun describe-paths (location map)
 (apply #'append (mapcar #'describe-path (cddr (assoc location map)))))

This function uses another common functional programming
technique: The use of Higher Order Functions- This means
that the apply and mapcar functions are taking other
functions as parameters so that they can call them
themselves- To pass a function, you need to put #' in front of
the function name... The cddr command chops the first two
item from the front of the list (so only the path data remains).
mapcar simply applies another function to every object in the
list, basically causing all paths to be changed into pretty
descriptions by the describe-path function. The "apply
#'append" just cleans out some parenthesis and isn't so
important. Let's try this new function:

(describe-paths 'living-room *map*)

==> (THERE IS A DOOR GOING WEST FROM HERE. THERE IS A STAIRWAY GOING UPSTAIRS FROM
HERE.)

Beautiful!

We still have one thing we need to describe: If there are any
objects on the floor at the location we are standing in, we'll
want to describe them as well. Let's first write a helper
function that tells us wether an item is in a given place:

(defun is-at (obj loc obj-loc)
 (eq (second (assoc obj obj-loc)) loc))

...the eq function tells us if the symbol from the object
location list is the current location.

Let's try this out:

(is-at 'whiskey-bottle 'living-room *object-locations*)

==> T

The symbol t (or any value other than nil) means that it's true
that the whiskey-bottle is in living-room.

Now let's use this function to describe the floor:

(defun describe-floor (loc objs obj-loc)
 (apply #'append (mapcar (lambda (x)
 `(you see a ,x on the floor.))
 (remove-if-not (lambda (x)
 (is-at x loc obj-loc))
 objs))))

This function has a couple of new things: First of all, it has
anonymous functions (lambda is just a fancy word for this).
That first lambda form is just the same as defining a helper
function (defun blabla (x) `(you see a ,x on the floor.)) and
then sending #'blabla to the mapcar function. The remove-if-
not function removes any objects from the list that are not at
the current location before passing the list on to mapcar to

build pretty sentences. Let's try this new function:

(describe-floor 'living-room *objects* *object-locations*)

==> (YOU SEE A WHISKEY-BOTTLE ON THE FLOOR. YOU SEE A BUCKET ON THE FLOOR)

Now we can tie all these descriptor functions into a single,
easy command called LOOK that uses the global variables
(therefore this function is not in the Functional Style) to feed
all the descriptor functions and describes everything:

(defun look ()
 (append (describe-location *location* *map*)
 (describe-paths *location* *map*)
 (describe-floor *location* *objects* *object-locations*)))

Let's try it:

(look)

==> (YOU ARE IN THE LIVING-ROOM OF A WIZARD'S HOUSE.
THERE IS A WIZARD SNORING LOUDLY ON THE COUCH.

THERE IS A DOOR GOING WEST FROM HERE.
THERE IS A STAIRWAY GOING UPSTAIRS FROM HERE.

YOU SEE A WHISKEY-BOTTLE ON THE FLOOR.
YOU SEE A BUCKET ON THE FLOOR)

pretty cool!

<< PREVIOUS NEXT >>

file:///home/drcode/lisperati.com/walking.html
file:///home/drcode/lisperati.com/data.html

Walking Around In Our World

Ok, now that we can see our world, let's write some code that
lets us walk around in it. The function walk-direction (not in
the functional style) takes a direction and lets us walk there:

(defun walk-direction (direction)
 (let ((next (assoc direction (cddr (assoc *location* *map*)))))
 (cond (next (setf *location* (third next)) (look))
 (t '(you cant go that way.)))))

The special command let allows us to create the local
variable next, which we set to the path descriptor for the
direction the player wants to walk in- cdr just chops the first
item off of a list. If the user types in a bogus direction, next
will be nil. The cond command is like a chain of if-then
commands in Lisp: Each row in a cond has a value to check
and an action to do. In this case, if the next location is not nil,
it will setf the player's location to the third item in the path
descriptor, which holds the symbol describing the new
direction, then gives the user a look of the new place. If the
next location is nil, it falls through to the next line and
admonishes the user. Let's try it:

(walk-direction 'west)

==> (YOU ARE IN A BEAUTIFUL GARDEN.
THERE IS A WELL IN FRONT OF YOU.

THERE IS A DOOR GOING EAST FROM HERE.
YOU SEE A CHAIN ON THE FLOOR.
YOU SEE A FROG ON THE FLOOR.)

Now, we were able to simplify our description functions by
creating a look command that is easy for our player to type.
Similarly, it would be nice to adjust the walk-direction
command so that it doesn't have an annoying quote mark in
the command that the player has to type in. But, as we have
learned, when the compiler reads a form in Code Mode, it
will read all its parameters in Code Mode, unless a quote tells
it not to. Is there anything we can do to tell the compiler that
west is just a piece of data without the quote?

<< PREVIOUS NEXT >>

file:///home/drcode/lisperati.com/spels.html
file:///home/drcode/lisperati.com/looking.html

Casting SPELs

Now we're going to learn an incredibly powerful feature of
Lisp: Creating SPELs!

SPEL is short for "Semantic Program Enhancement Logic"
and lets us create new behavior inside the world of our
computer code that changes the Lisp language at a
fundamental level in order to customize its behavior for our
needs- It's the part of Lisp that looks most like magic. To
enable SPELs, we first need to activate SPELs inside our
Lisp compiler (Don't worry about what this line does-
Advanced Lispers should click here.)

(defmacro defspel (&rest rest) `(defmacro ,@rest))

Ok, now that they're enabled, let's cast our first spell, called
walk:

(defspel walk (direction)
 `(walk-direction ',direction))

What this code does is it tells the Lisp compiler that the word
walk is not actually the word walk but the word walk-
direction and that the word direction actually has a quote in
front of it, even though we can't see it. Basically we can
sneak in some special code inbetween our program and the
compiler that changes our code into something else before it
is compiled:

file:///home/drcode/lisperati.com/no_macros.html

Notice how similar this function looks to the code we had
written before for describe-path: In Lisp, not only do code
and data look a lot identical, but code and special commands
to the compiler (the SPELs) look identical as well- A very
consistent and clean design! Let's try our new spell:

(walk east)

==> (YOU ARE IN THE LIVING ROOM OF A WIZARD'S HOUSE.
THERE IS A WIZARD SNORING LOUDLY ON THE COUCH.

THERE IS A DOOR GOING WEST FROM HERE.
THERE IS A STAIRWAY GOING UPSTAIRS FROM HERE.

YOU SEE A WHISKEY-BOTTLE ON THE FLOOR.
YOU SEE A BUCKET ON THE FLOOR)

much better!

Now we'll create a command to pickup objects in our world:

(defun pickup-object (object)
 (cond ((is-at object *location* *object-locations*) (push (list object 'body) *object-locations*)
 `(you are now carrying the ,object))
 (t '(you cannot get that.))))

This function checks to see if the object is indeed on the floor
of the current location- If it is, it pushes the new location (the
player's body) onto the list (pushing means to add a new item
to the list, in a way that the assoc command sees and
therefore hides the previous location) and returns a sentence
letting us know wether it succeeded.

Now let's cast another SPEL to make the command easier to
use:

(defspel pickup (object)
 `(pickup-object ',object))

Now let's try our new SPEL:

(pickup whiskey-bottle)

==> (YOU ARE NOW CARRYING THE WHISKEY-BOTTLE)

Now let's add a couple more useful commands- First, a
command that lets us see our current inventory of items we're
carrying:

(defun inventory ()
 (remove-if-not (lambda (x)
 (is-at x 'body *object-locations*))
 objects))

Now a function that tells us if he have a certain object on us:

(defun have (object)
 (member object (inventory)))

<< PREVIOUS NEXT >>

Creating Special Actions in Our Game

We have only one more thing to do now and our game will
be complete: Add some special actions to the game that the
player has to do to win in the game. The first command will
let the player weld the chain to the bucket in the attic:

(setf *chain-welded* nil)

file:///home/drcode/lisperati.com/actions.html
file:///home/drcode/lisperati.com/walking.html

(defun weld (subject object)
 (cond ((and (eq *location* 'attic)
 (eq subject 'chain)
 (eq object 'bucket)
 (have 'chain)
 (have 'bucket)
 (not *chain-welded*))
 (setf *chain-welded* 't)
 '(the chain is now securely welded to the bucket.))
 (t '(you cannot weld like that.))))

So first we created a new global variable that lets us tell
whether we've done this action already. Next, we create a
weld function that makes sure all the right conditions are in
place for welding and lets us weld.

Let's try our new command:

(weld 'chain 'bucket)

==> (YOU CANNOT WELD LIKE THAT.)

Oops... we're don't have a bucket or chain, do we? ...and
there's no welding machine around... oh well...

Now let's create a command for dunking the chain and bucket
in the well:

(setf *bucket-filled* nil)

(defun dunk (subject object)
 (cond ((and (eq *location* 'garden)
 (eq subject 'bucket)
 (eq object 'well)
 (have 'bucket)
 chain-welded)
 (setf *bucket-filled* 't) '(the bucket is now full of water))
 (t '(you cannot dunk like that.))))

Now if you paid attention, you probably noticed that this
command looks a lot like the weld command... Both
commands need to check the location, subject, and object-
But there's enough making them different enough so that we
can't combine the similarities into a single function. Too
bad...

...but since this is Lisp, we can do more than just write
functions, we can cast SPELs! Let's create the following
SPEL:

(defspel game-action (command subj obj place &rest rest)
 `(defspel ,command (subject object)
 `(cond ((and (eq *location* ',',place)
 (eq ',subject ',',subj)
 (eq ',object ',',obj)
 (have ',',subj))
 ,@',rest)
 (t '(i cant ,',command like that.)))))

Notice how ridiculously complex this SPEL is- It has more
weird quotes, backquotes, commas and other weird symbols
than you can shake a list at. More than that it is a SPEL that
actually cast ANOTHER SPEL! Even experienced Lisp
programmers would have to put some thought into create a
monstrosity like this (and in fact they would consider this
SPEL to be inelegant and would go through some extra
esoteric steps to make it better-behaved that we won't worry
about here...)

The point of this SPEL is to show you just how sophisticated
and clever you can get with these SPELs. Also, the ugliness
doesn't really matter much if we only have to write it once
and then can use it to make hundreds of commands for a
bigger adventure game.

Let's use our new SPEL to replace our ugly weld command:

(game-action weld chain bucket attic
 (cond ((and (have 'bucket) (setf *chain-welded* 't))
 '(the chain is now securely welded to the bucket.))
 (t '(you do not have a bucket.))))

Look at how much easier it is to understand this command-
The game-action SPEL lets us write exactly what we want to
say without a lot of fat- It's almost like we've created our own
computer language just for creating game commands.
Creating your own pseudo-language with SPELs is called
Domain Specific Language Programming, a very powerful
way to program very quickly and elegantly.

(weld chain bucket)

==> (YOU DO NOT HAVE THE CHAIN.)

...we still aren't in the right situation to do any welding, but
the command is doing its job!

Next, let's rewrite the dunk command as well:

(game-action dunk bucket well garden
 (cond (*chain-welded* (setf *bucket-filled* 't) '(the bucket is now full of water))
 (t '(the water level is too low to reach.))))

Notice how the weld command had to check whether we
have the subject, but that the dunk command skips that step-
Our new game-action SPEL makes the code easy to write and
understand.

And now our last code for splashing water on the wizard:

(game-action splash bucket wizard living-room
 (cond ((not *bucket-filled*) '(the bucket has nothing in it.))

 ((have 'frog) '(the wizard awakens and sees that you stole his frog.
 he is so upset he banishes you to the
 netherworlds- you lose! the end.))
 (t '(the wizard awakens from his slumber and greets you warmly.
 he hands you the magic low-carb donut- you win! the end.))))

You have now written a complete text adventure game!

Click HERE for a complete walkthrough of the game,
Click HERE for a copy of the source code you can copy &
paste into your Lisp prompt in a single step.

In order to make this tutorial as simple as possible, many
details about how Lisp works have been glossed or fudged
over, so let's look at what those details are...

<< PREVIOUS NEXT >>

Addendum

file:///home/drcode/lisperati.com/addendum.html
file:///home/drcode/lisperati.com/spels.html
file:///home/drcode/lisperati.com/code.html
file:///home/drcode/lisperati.com/cheat.html

Ok, now lets talk about some issues that were glossed over in
this tutorial...

First of all, Lisp code is often interpreted as well as compiled,
often right within the same program... Because of this, the
Lisp environments are not usually referred to as compilers
but just as implementations.

(although even interpreted Lisp code is usually first compiled
into byte code, but that's another story...)

Additionally, there are other great Lisp implementations that
are worth mentioning- There is a detailed list available that
Rainer Joswig and Bill Clementson have put together.

One major cheat that we made in this tutorial is that we wrote
our game sentences using symbols

'(this is not how Lispers usually write text)

"Lispers write text using double quotes"

Symbols have a special meaning in Lisp and are used to store
unique names of functions, variables, and other things.
Because of this, Lisp treats symbols in special ways that are
awkward for text messages (such as making them ALL
CAPS...). Using strings instead of symbols allows text we
work with to not be affected by any such quirks, but requires
more esoteric commands for manipulating text. Also,
working with strings is not so relevant to teaching the far
more important symbol manipulation commands in Lisp.

One more thing we left out of the code is the defparameter
command for creating global variables- Instead, we just used
setf to declare variables (which works, but is considered bad
style...)

Another simplification is that association lists (also called
alists) are usually written using a dotted list, because it is
slighlty more efficient and elegant to an experienced Lisper.
This is confusing to beginners, however, because it requires
an understanding of Cons Cells, which you can read about
here.

Another glossed over issue is that SPELs are more commonly
referred to as "Lisp true macros" and are created with the
defmacro command, which is very confusing for teaching
purposes. Read the following short essay as to why I think
this name distinction is beneficial. And finally, there are ugly
name collisions that can happen when a SPEL is written in
the style of the game-action SPEL. If you read more

file:///home/drcode/lisperati.com/no_macros.html
http://c2.com/cgi/wiki?ConsCell
http://home.comcast.net/~bc19191/blog/041203.html

advanced lisp materials this will be explained in greater
detail.

Q. What should I read next to expand my knowledge of lisp?

A.

There are many great (and some downloadable) Lisp books
available at the cliki website.
If you're interested in the most intense theoretical text, I
would recommend the free ebook version of On Lisp by Paul
Graham. The other books he has written and the essays on his
website are also fantastic.

If you're interested in a more pragmatic tack, many Lispers
are currently excited about the book Practical Common Lisp
by Peter Seibel. Some chapters of this book are available on-
line.

http://www.gigamonkeys.com/book/
http://www.gigamonkeys.com/book/
http://www.amazon.com/exec/obidos/tg/detail/-/1590592395/qid=1102288668/sr=8-1/ref=sr_8_xs_ap_i1_xgl14/104-7821785-4266358?v=glance&s=books&n=507846
smb://www.paulgraham.com/onlisp.html
http://www.cliki.net/Lisp%20books

