
by Conrad Barski, M.D. Mail

Note To Advanced Haskellers

Hi everyone,
welcome to my Haskell tutorial!

There's other tutorials out there, but you'll like this one the
best for sure: You can just cut and paste the code from this
tutorial bit by bit, and in the process, your new program will
create magically create more and more cool graphics along
the way... The final program will have less than 100 lines of
Haskell[1] and will organize a mass picnic in an arbitrarily-
shaped public park map and will print pretty pictures
showing where everyone should sit! (Here's what the final
product will look like, if you're curious...)

The code in this tutorial is a simplified version of the code
I'm using to organize flash mob picnics for my art project,
picnicmob.org... Be sure to check out the site and sign up if
you live in one of the cities we're starting off with :-)

mailto:lisperati@gmail.com
http://picnicmob.org/
http://lisperati.com/haskell/picnic.hs
http://lisperati.com/haskell/#f1
http://lisperati.com/haskell/note.html

NEXT

[1] - Lines of active code only, not counting optional function
signatures. Intermediate debug output lines excluded. May
cause eye irritation if viewed for prolonged periods of time.
Speak to your physician to find out if this tutorial is the best
treatment option for you.

How To Organize a Picnic on a Computer

Ok, so here's what the program is going to do... On the
picnicmob.org website, people answer a bunch of random
questions. What we want our program to do is take a picture of
a city park, a list of answers people gave on the questions, and
have it figure out where people should sit in the park so that
their neighbors are as similar as possible to them, based on
similar answers for the questions. We're going to do this using
a standard simulated annealing algorithm. (Read this for more
info... we'll be describing the basics below, too...)

Installing GHC Haskell On Your Computer

The only preparation you need to do for this tutorial is install
the Glasgow Haskell Compiler- You can get the latest version
from here. It's a very well supported and very fast compiler.
We're just going to use the basic GHC libraries in this tutorial-
No other installs are needed.

http://www.haskell.org/ghc/
http://en.wikipedia.org/wiki/Simulated_annealing
http://lisperati.com/haskell/ht1.html

Hello World! Let's Have a Picnic!

Now you have all you need to run the "Hello World" program
below- Just copy the code into a file called tutorial.hs:

import Data.List
import Text.Regex
import System.Random
import Data.Ord

type Point = (Float,Float)
type Color = (Int,Int,Int)
type Polygon = [Point]
type Person = [Int]
type Link = [Point]
type Placement = [(Point,Person)]

type EnergyFunction a = a -> Int
type TemperatureFunction = Int -> Int -> Float
type TransitionProbabilityFunction = Int -> Int -> Float -> Float
type MotionFunction a = StdGen -> a -> (StdGen,a)

main = do
 putStr "Hello World! Let's have a picnic! \n"

After you've copied the code to a file, just run your new
program from the command line as shown below:

> runHaskell tutorial.hs

Hello World! Let's have a picnic!

phew That was easy!

How Does This Code Work?

As you can see, there's lots of stuff in this "Hello World" that
doesn't seem necessary... Actually, only the last two lines
(starting at main = do) are really needed to print our
message... The rest is just header stuff that we'll use later in
the tutorial...

At the top, you can see some things we're importing out of
the standard GHC libraries:

1. The Data.List module has extra functions for
slicing and dicing lists- Lists are fundamental in
Haskell programming and we'll be using them a lot in
this program.

2. The Text.Regex module let's us do funky things
with text strings using regular expressions- If you
don't know what this means, read this tutorial first.
Every programmer should know about regular
expressions.

3. The System.Random module, as you've probably
guessed, lets us use random numbers, essential for
simulated annealing.

4. The Data.Ord just contains a single function I'm
really fond of, called comparing. I'm not happy if I
can't use comparing, and I think we all want this to
be a happy tutorial...

The next few lines define different types that we're going to
use in our picnic program... Haskell programmers are really
fond of lots of types, because Haskell compilers are basically
just these crazy type-crunching machines that will take any
types you give them and if they find anything questionable
about how you're using types they will let you know early,
preventing your program from becoming buggy. The way
Haskell compilers handle types puts them head and shoulders
above most other compilers (Read more about Hindley-
Milner type inference here.)
The first few type lines should be pretty self-explanatory,

http://en.wikipedia.org/wiki/Type_inference
http://www.matthewgifford.com/a-tao-of-regular-expressions/

for a program that's going to work with pictures: A Point is
just a pair of floating numbers, a Color is an rgb triple, a
Polygon is just a list of Points, a Person is just a list of
the answers they gave in the questionaire- Very simple stuff...

The lower type lines are a bit more difficult to understand-
They describe the types of the four functions that are used in
all simulated annealing algorithms... we'll be describing those
later on. For now, just know that in Haskell you want to look
at the last arrow, which looks like this >... Anything to the
left of that arrow is a parameter into our function- The thing
to the right is the return value of the function. For instance,
the EnergyFunction is a function that takes an arbitrary
type a (which will be a seating arrangement of picnickers)
and returns an integer, which is the "energy" of our picnic. A
low energy will mean that all the picnickers are happy with
where they're sitting. We'll explain these funcitons more later.

What's Good about this Code?

What's good is that in Haskell we can create all kinds of
types to describe what we want to do and the Haskell
compiler is very good at catching potential errors for us
ahead of time. Defining types in Haskell is usually a choice
and not a necessity- This program would run just fine, even if
all the type declarations were missing... The Haskell compiler
would just figure them out on its own!

Another thing that's good is that the part that writes "Hello
World" is very short and simple in Haskell.

What's Bad about this Code?

To keep things simple I'm building these new types using the
type command, instead of another command called data.
This other command (which you don't need to know about
today) lets you attach a special new type name that you use to
construct your new type- That name makes it even harder to
accidentally use the wrong type in the wrong place in your
program.

Another thing thats "bad" about this code is that we used the
type Int. Unlike all other types in this program, Int has an
upper limit and could theoretically cause our program to err
out if any integers got way too massively big. In Haskell, this
type of integer can't get bigger than 2^31... We could have
used the type Integer instead- This type of integer grows
"magically" and can hold any sized integer, no matter how
big... but it's slower, so we used Int instead, since our
numbers will never get that big.

NEXT

Alright- So what do we know about
the people at our picnic?

Now that we've got "Hello World" working... let's load the
answers people gave to the questions on the picnicmob.org
website... For testing purposes, I've created some anonymized
data and put it into the file people.txt for you to use- Just save
this file to your computer.

Here's what that file looks like- It's just a list of list of
numbers. Each row is a person and the numbers are the value
answer number they gave on each question:

[
[2,3,3,4,4,3,5,2,2,3,2,2,2,3,2,5,3,1,3,5,2,5,2,2,2,3,2,5,2,3],
[2,3,3,2,3,3,5,2,3,4,2,2,1,1,1,2,1,5,1,4,2,5,2,2,2,2,4,1,1,1],
[2,3,4,3,3,5,5,2,3,5,2,3,2,1,2,4,4,3,3,1,2,5,3,5,2,3,4,1,1,2],
[1,3,3,3,3,3,3,3,4,4,3,3,4,4,2,3,3,3,1,4,3,4,3,3,2,1,3,2,3,3],
[4,1,3,3,3,3,4,1,3,4,3,3,1,2,1,4,4,2,2,4,2,2,2,1,2,3,4,2,5,1],
[2,1,1,2,3,5,4,1,1,1,2,3,5,1,3,2,4,2,3,5,2,5,2,2,2,3,4,2,2,4],

http://lisperati.com/haskell/people.txt
http://lisperati.com/haskell/ht2.html

[1,3,4,2,3,5,4,1,3,1,2,2,2,3,1,1,1,2,2,2,2,1,2,1,2,3,3,1,3,3],
[3,3,3,1,3,2,2,1,2,3,2,3,2,3,2,3,3,5,2,1,2,5,2,1,2,1,4,2,2,2],
[1,3,4,3,3,5,5,3,1,4,2,4,1,1,5,1,1,4,2,5,2,5,3,1,2,3,4,2,1,4],
[1,3,4,2,4,5,4,3,2,1,3,4,1,1,4,5,4,5,3,4,2,2,2,1,2,3,3,4,1,4],
[1,1,1,4,4,1,4,3,3,3,4,3,1,2,1,4,1,5,2,2,2,4,2,5,2,1,4,4,1,3],
...

Here's the code that reads in this list of numbers. Adding this
code to our existing program is super easy: Just paste this
new code to the bottom of the "Hello World" program to
make the new code work- Do the same thing, as we go
along, with all the other code fragments in this tutorial.

 people_text <- readFile "people.txt"

 let people :: [Person]
 people = read people_text

 putStr "Number of people coming: "
 print (length people)

Now let's see if this code is able to read our file:

> runHaskell tutorial.hs

Hello World! Let's have a picnic!
Number of people coming:
200

perfect!!

How Does This Code Work?

Ok, so let's dissect this code to figure out how it worked... The
first line read the file "people.txt" and assigned it to the a string
named people_text... Note that we used a left-pointing
arrow < to do the assignment, instead of an equals sign. The
reason for this is that Haskell is very finicky about code that
does I/O, like reading from the disk or printing something on

the screen. In the Haskell way of thinking, code that does this
is pure evil and needs to be imprisoned into its own pen,
separately from the rest of your Haskell program.

Why does it think I/O is evil? It has to do with those types we
defined at the top of our program: For instance, we said that
the definition of an EnergyFunction is a function that
converts from an arbitrary type a to an Int- That is all that an
EnergyFunction is allowed to "do". In Haskell's way of
thinking, if an EneregyFunction, let's say, prints
something on the screen, then that means it's doing more than
we said it would do, and will complain when we try to compile
our program.

If we want to "break the rules" of Haskell and do stuff like read
from the disk or write to the screen, we have to do it in a
special way: We put the word do at the beginning of the
function (remember the line "main = do"?) and whenever
we grab some value using IO, we use the aforementioned <
arrow and it will let us do what we want.

***IMPORTANT: Before starting to read this next
paragraph, put your fingers in both ears and chant
"Lalalalala I can't hear you I can't hear you

lalalala..."***

What Haskell is doing here is forcing you to write functions
using IO within the IO Monad, which is a concept taken from
mathematics and is actually very clever and useful once you
learn more about the Haskell way of thinking. This is the only
time in this tutorial where I'm going to use the word
'Monad'... except for the very very last word of the tutorial.

***OK, you can take your fingers out of your ears
and stop chanting now. You can thank me later by
email for protecting you from a tragic downward
spiral in your sanity that would be inevitable as
you try to fully understand the meaning continued
in the concepts mentioned in the aforementioned
paragraph.***

So once we've read in our list of people, we want to convert it
from a string into a type [Person]- Remember, we defined
the Person type earlier. As you can see, we assign the name
people, which has the type Person, as indicated by the line
with the double colon ::, and read it out of the text string
people_text. Note that in this case, we assigned the name
with just a regular 'ol equal sign: We could do this, since we're
not doing any IO any more... we already did this "dirty work"
earlier. Functions in Haskell that don't do IO are called purely
functional.

The last two lines are obvious- They just print a message on
the screen indicating the length of the people variable.

What's Good about this Code?

Several things- First, we were able to decouple our IO from the
rest of our code- This helps reduce programming errors and is
a major feature of Haskell programming (Clearly, this'll
become more important later on, when our code is a bit more
complex...)

Something else that's really "good" is that when we read our

people from the file, we didn't have to tell Haskell what type
of data we were reading: The read function in the program
used the compiler to figure out, on it's own, that a Person is a
list of integers, and that reading a list of people therefore
constitutes reading a list of list of integers, which is what we
put into people.txt. If we had put anything else in there,
read would have noticed this and complained when we ran
our program. (In OOP-speak, this basically meant we
polymorphically dispatched based on the return value of a
function- Try doing that with your favorite Java compiler
sometime :-)

What's Bad about this Code?

For one thing, we defined our people in a let expression in
the middle of our main function... We did this so that we can
simplify this tutorial by just appending new bits of code to the
bottom of our program as we move along... Most Haskellers
would just add these definitions separately outside of the main
function, but either way works just fine.

NEXT

Let's Draw Us a Purty Picture

Ok, so I promised you some pretty pictures in this tutorial...
Now, finally, the time has come for this! We're going to draw
pictures in a really cool way: We're going to write our own
SVG files from scratch!

SVG files are a simple file format for specifying images that
you'll probably hear a lot more of in the future- It's
completely resolution independent and already used by many
drawing programs such as Inkscape, which I highly
recommend.

(Note to internet explorer users: If the pictures below don't
show up right in your web browser, you probably need to
download an SVG viewer... everyone else should be fine...)

Here's the code that'll take a list of colored polygons and
write it to an svg file:

http://www.adobe.com/svg/viewer/install/main.html
http://www.inkscape.org/
http://lisperati.com/haskell/ht3.html

 let writePoint :: Point -> String
 writePoint (x,y) = (show x)++","++(show y)++" "

 let writePolygon :: (Color,Polygon) -> String
 writePolygon ((r,g,b),p) = "<polygon points=\""++(concatMap writePoint p)+
+"\" style=\"fill:#cccccc;stroke:rgb("++(show r)++","++(show g)++","++(show b)+
+");stroke-width:2\"/>"

 let writePolygons :: [(Color,Polygon)] -> String
 writePolygons p = "<svg xmlns=\"http://www.w3.org/2000/svg\">"++(concatMap
writePolygon p)++"</svg>"

 let colorize :: Color -> [Polygon] -> [(Color,Polygon)]
 colorize = zip.repeat

 let rainbow@[red,green,blue,yellow,purple,teal] = map colorize [(255,0,0),
(0,255,0),(0,0,255),(255,255,0),(255,0,255),(0,255,255)]

 writeFile "tut0.svg" $ writePolygons (blue [[(100,100),(200,100),(200,200),
(100,200)],[(200,200),(300,200),(300,300),(200,300)]])

After you run this code, you'll see the following picture
drawn in the file tut0.svg that you can open in your web
browser:

How Does This Code Work?

This code is a quick n' dirty SVG file writer. In order to draw
a list of polygons, it breaks the task into subtasks- First, into
writing the separate polygons, then into the task of writing
each individual point.

Since the Polygons are just a list of individual Polygons
and those are just a list of points, we express this in Haskell
using the map function- This function takes a list of things
and a function that operates on an individual item in the list,
and grinds through the list with this function- Haskellers
never use loops- Instead, they either use recursion to do
looping, or they use functions like map that take other
functions as parameters. Functions that do this are called
higher order functions. In the writePolygons and
writePolygon functions, you can see the mapping
function being used: In this example, we're using a clever
variant called concatMap that also concatenates the result
of the mapping together, saving us a step.

An important thing to note in the writePoint function is
that something funky is happening on the left side of the
equals sign- Instead of taking a variable name for the point
we're passing in, we're instead pulling in the point using
(x,y), so that we can tease the point apart as separate x and
y values- Haskell can do this for us because it supports
pattern matching: We can put an arbitrary structure where
other languages may ask for a simple variable name- The
compiler then figures out if the value "coming in" to the
function can meet your structure, and if so, it will destructure
the parameter and give you whatever pieces you want with
the names you gave it.

The way we handle colors in this example uses some more
clever Haskell tricks... It has enough complicated ideas that it
deserves it's own section in this tutorial: If you can
understand what colorize = zip.repeat means,
you'll understand probably most of what Haskell has to
offer in just three words!

The Insane coolness of
colorize = zip.repeat

OK, to explain how the definition of colorize could
possibly work and why it's so cool, I'll first tell you that it is
equivalent to the following, less elegant piece of code:

colorize c p = zip (repeat c) p

...this version is a little easier to grok for a newbie, so let's
start with it first...

To start off, I should point one little oddity about Haskell: It's
a lazy language- This means that when your program runs,
only those things are calculated at the last possible moment-
This means Haskell programs can (and usually do) have data
structures in them that are actually infinite in size... repeat
is one example of a function that does this:

Alright- so we take a color, c, and use the repeat function
to turn it into a list of that color that repeats infinitely. So if,
for instance, our color is rgb red (255,0,0), the repeat
function creates the infinite list [(255,0,0), (255,0,0),
(255,0,0), ...]. The fact that this list is infinite is OK in
Haskell, because Haskell is just so , well, damn lazy- We're
not going to ask for all the items in this list, so it'll just
happily play around with this infinitely long list as if nothing
is wrong.

The next function, zip, takes two list and zipps 'em up into a
list of pairs: So it'll take our list of colors and our list of
polygons in the variable p and make a list of
(Color,Polygon) pairs, which is what we want- Since
the number of polygons will probably be finite in number, the
zip function will stop using items from the infinite list of
colors and, voila, the infinities magically disappear, through
sheer, unmitigated, abominable laziness.

Ok, so now let's take this function and let's see if we can
make it more elegant

colorize c p = zip (repeat c) p

To understand how this function can be made even simpler,
we need to talk about currying: In Haskell, basically all
functions are curried- What this means is that Haskell
functions only ever take a single parameter. "But wait", you
protest, "Our colorize function takes two parameters, a
Color and a Polygon." Alas, it is not actually so- To
understand why, let's look at the type definition for our

colorize function:

colorize :: Color > [Polygon] > [(Color,Polygon)]

Earlier I told you that you should look at the last arrow in a
type definition and that all things in front of that arrow are
parameters- While this is a good way to think about Haskell
functions, in reality, the arrow > is actually right
associative... that means this function actually reads as
follows:

colorize :: Color > ([Polygon] > [(Color,Polygon)])

So in reality, strangely enough, the colorize function only
takes one parameter, but it actually returns another function
(of type [Polygon] > [(Color,Polygon)]) as a
result! So if we ever write colorize
my_favorite_color my_favorite_polygon what's
really happening is that the color is passed in first and a new
function is created- Next, the polygon is passed into this new
function to generate the result.

OK, so how does this fact help us simplify our definition of
colorize? Well, remember that Haskell supports pattern
matching- This means, we can just drop the p (polygon)
parameter from both sides and the compiler cna still make
sense of it:

colorize c = zip (repeat c)

Next, we can use a the haskell sequencing operator
(represented by the dollar sign $) to get rid of the
parenthesis- When you see this, it just means there's an
imaginary "matching parenthesis" to the dollar sign at the end
of the code expression:

colorize c = zip $ repeat c

The dollar sign is really just syntactic sugar but it's really
useful because if we are just feeding single values into
functions, as we usually are, then it forms kind of an
assembly line- So basically, we're taking the value c, running
it through repeat, then running it through zip- This works

exactly the same way as a Unix pipe, if you've ever worked
with that clever concoction before...

When we see this kind of assembly line, we can usually
simplify it even more by using function composition, which
Haskell represents with a period (You may have learned this
in precalculus- Maybe you remember your teacher talking
about "f of g of x" in front of the class and putting a little dot
between the f and the g- This was exactly the same idea :-)

Using function composition, we can now compose the the
zip and repeat functions like so:

colorize c = (zip.repeat) c

Can you figure out why we want to do this? You may notice
we have another value dangling off the back of our function
again- We can snip it off of both sides, just like before,
leaving us with the final, most elegant form:

colorize = zip.repeat

You've gotta admit, a language that can do that is pretty cool!
Writing functions with the "dangling values" removed is
called writing in a point-free style

Making Some Simpler Functions For Coloring Stuff

Most of the time, a general-purpose function like colorize
is too much trouble- What we really want is functions for
coloring things red, green, blue, etc. The last thing we
defined in the code fragment above were some simple
functions with obvious names that are just versions of
colorize that have the color value prefilled- We do this by
just mapping a list of rgb values against the colorize to
create a list of color functions that we just use to define a
slew of new functions all at once- Having a language that
treats functions just like any other values makes stuff like this
easy. As a bonus, this line of code also defines a variable
rainbow that contains all the colors, and which we'll use
later to paint with lots of colors, all at one.

What's good about this code?

One thing that's really good about it is that it does an
immense amount of stuff using just a miniscule amount of
code- Our colorize function is the ultimate in brevity
(Remember that all the type definition lines, which have a
double colon, are just optional niceties and aren't actually
needed for the program to work...)

Why do we care so much about brevity? Well, since Haskell
also has ridiculously strict type checking, it means we can
sandwich all our bugs between the type checker on one side
(many bugs involve mismatching types) and code brevity on
the other end (less code, means less room for bugs to hide)

Arguably, Haskell is the one language that has the toughest
type checking and allows for the briefest code- That means
Haskell allows you write code that's more bug free than
almost any other language. I would estimate that I spent only
about 3% of my development time debugging this program,
which I could never accomplish that in another language.
(Now, mind you, it can be a b*** to get your program to
compile properly in Haskell in the first place, but once you
get to that point, you're home free :-)

What's bad about this code?

Well, we're creating raw xml data as text in this example- It
would be much better to use an XML processing library, like
HaXml, to make this even less error prone. However, we
want to just stick with the basic GHC compiler here and not

http://www.cs.york.ac.uk/fp/HaXml/

spend time installing tons of stuff for a simple little tutorial.

NEXT

Let's Read In a Picture of a Park

Now that we can create SVG pictures in Haskell, next thing
we'll want to do is read them from other programs. Below is a
picture of Stanton Park in Washington DC (grab the file
here) I drew in InkScape.

http://lisperati.com/haskell/park.svg
http://lisperati.com/haskell/ht4.html

Here's the code that will load that picture into Haskell:
(again, just stick it to the bottom of the previous code)

 let readPoint :: String -> Point
 readPoint s | Just [x,y] <- matchRegex (mkRegex "([0-9.]+),([0-9.]+)") s =
(read x,read y)

 let readPolygon :: String -> Polygon
 readPolygon = (map readPoint).(splitRegex $ mkRegex " L ")

 let readPolygons :: String -> [Polygon]
 readPolygons = (map readPolygon).tail.(splitRegex $ mkRegex "<path")

 park_data <- readFile "park.svg"

 let park = readPolygons park_data

 writeFile "tut1.svg" $ writePolygons (green park)

Here's what tut1.svg looks like- Notice that only the
outlines of the polygons are colored once the park data has
made a pass through our program- There's no need in this
simple tutorial to track the fill colors separately from the
outlines, so we'll just leave those colorless:

This code is pretty much structured the same way as the code
that did the writing of the SVG. In this case we're using
regular expressions to split the data into parts that have each
polygon. The SVG format is actually very complex, so this
code takes some liberties in the format and may fail on some
SVG files- For the purposes of loading some SVG maps into
our program, though, it's great!

What's good about this code?

This code illustrates another situation where Haskell's
laziness really makes things easy for us: All the regular
expression functions just take regular 'ol text strings... If
you've ever used regular expression libraries in other
languages, you may remember they usually use streams or
ports or file handles. Haskell just uses strings. Some of you
may protest "Hey! what if you're reading in a 2GB file? Are
you just going to read that into a string and then parse it?
That would be suicide!"

In most languages, this would indeed be suicide, but not in
Haskell: Because it's a lazy language, it won't actually read in
any data from the file it doesn't feel it needs- So,
theoretically, this code would be just as efficient as reading a
regular expression from a stream! Additionally, if you aren't
using the park_data text string for anything else, the
language will probably garbage collect the "front end" of the
file as well. So, in theory, we could search through a 2GB file
in Haskell in this incredibly simple manner and still maintain
a memory footprint that is comparable to that of a stream-
based regular expressions library!

NEXT

Alright already!!! Can we finally start
to actually organize a picnic???

Yes! now that we can read and write SVG pictures, we're
finally ready to start organizing a picnic!

http://lisperati.com/haskell/ht5.html

First thing we'll want to do is break our city park into evenly-
sized little lots for each picnickers to sit on- In order to do
this, we'll first need some functions that can slice and dice
big polygons into small polygons- The first of these functions
is triangulate:

 let triangulate :: Polygon -> [Polygon]
 triangulate (a:b:c:xs) = [a,b,c]:triangulate (a:c:xs)
 triangulate _ = []

 let triangles = concatMap triangulate park

 writeFile "tut2.svg" $ writePolygons (purple triangles)

Here's what the file tut2.svg will look like:

There's a few things i'll need to explain about the
triangulate function...

First of all, you notice that this function is actually has two
definitions, with different patterns to the left of the equal sign
((a:b:c:xs) and _) The way Haskell works is that it will
try to match to the first pattern if it can. Then, if that fails, it'll
go to the next one it finds.

In the first version of the function, it checks to see if the list
of points has at least three points in it- As you can imagine,
it's hard to triangulate something if you don't have at least
three points. The colons in the (a:b:c:xs) expression let
you pick the head item off of a list (or, for that matter, stick
something on the head if we used it on the right side of the
equation) so this pattern means we need the next three
"heads" of the list to be 3 values a, b, and c. If we don't have
three points, the second version of the function will match
instead. (anything will match the underline character)

If we do find that we have three points, the first version of
triangulate will make a triangle and will then
recursively call itself to build more triangles. In a language
like Haskell, which has no loops, these types of recursive
functions that consumes lists are a classic design. Most of the
time, however, we can avoid explicitly creating recursive
functions like this by using list functions like map and folds,
which we'll discuss later.

What's good about this code?

Using Haskell pattern matching and recursion, we can very
elegantly express functions that process lists, like
triangulate.

What's bad about this code?

Polygon triangulation is actually slightly more complicated
than our function suggests, because there's special procedures
that would need to be followed to triangulate concave
polygons... In this tutorial, we're skirting this issues by
removing convex polygons when we draw our city park
maps- That's why there's some oddball extra lines in the
original park map.

NEXT

Slicing Up A Park, Neatly

Now that weve broken up our park into little triangles, it's
pretty easy to write some functions that will partition the park
into chunks by slicing our triangle piles along arbitrary
horizontal and vertical lines. Here's the code that will do that:

 let clipTriangle :: (Point -> Point -> Point) -> [Point] -> [Point] -> [Polygon]
 clipTriangle i [] [a,b,c] = []
 clipTriangle i [a] [b,c] = [[a,i a b,i a c]]
 clipTriangle i [a,b] [c] = [[a,i a c,b],[b,i a c,i b c]]
 clipTriangle i [a,b,c] [] = [[a,b,c]]

http://lisperati.com/haskell/ht6.html

 let slice :: (Point -> Bool) -> (Point -> Point -> Point) -> [Polygon] ->
([Polygon],[Polygon])
 slice f i t = (clip f,clip $ not.f)
 where clip g = concatMap ((uncurry $ clipTriangle i).(partition g)) t

 let sliceX :: Float -> [Polygon] -> ([Polygon],[Polygon])
 sliceX x = slice ((x >).fst) interpolateX
 where interpolateX (x1,y1) (x2,y2) = (x,y1+(y2-y1)*(x-x1)/(x2-x1))

 let sliceY :: Float -> [Polygon] -> ([Polygon],[Polygon])
 sliceY y = slice ((y >).snd) interpolateY
 where interpolateY (x1,y1) (x2,y2) = (x1+(x2-x1)*(y-y1)/(y2-y1),y)

 let (left_side,right_side) = sliceX 200 triangles

 writeFile "tut3.svg" $ writePolygons $ (red left_side) ++ (blue right_side)

If we look at tut3.svg, this is what we'll see:

Let's look at the different functions to see how this works...
The slice is the heavy lifter in this code snippet: It
embodies the abstract action of slicing a pile of polygons
using a line. What makes it cool is that it is extremely
abstract and general- The actual line is represented by two
functions passed into it: One function, of type (Point >
Bool), lets slice know if a point is on one side or the of
the arbitrary line. The other function, of type (Point >
Point > Point), lets it know the point at which two
points on opposite sides of the line intersect with the line-
Our interpolation function.

Think of what this means: By making slice a higher order
function (higher order functions are functions that take other
functions as parameters) we can decouple the task of slicing
from any details about the location or angle of the cut.

Having the abstract slice function makes it easier to write
more concrete vertical and horizontal slicing functions
(sliceX and sliceY, respectively.) If we wanted to, we
could write functions that slice at other angles nearly as
easily, still using slice to do the actual cutting.

The clipTriangle function is a tool used by slice,
which figures out if a given triangle is cut by a line and
breaks it into 3 baby triangles, if this is the case.

What's good about this code?

We used higher order programming to decouple the general
job of slicing triangles along a line from the grimy math
involved with specific types of lines. This is another great
tool for modularizing our programs that Haskell makes easy.

What's bad about this code?

Actually, I think this code is pretty much all around good,
given the task at hand.

NEXT

How to Make Sure Everyone Gets a Fair Slice of the Park

Now that we have the tools we need to cut our park into nice
little pieces, how do we figure out the best way to cut it up?

Well, I don't have a perfect answer (if there is any to be had)
but it's not too hard to come up with a pretty good solution
using a heuristic approach. Here's how we're going to do it:

First, we cut the park roughly down the middle in two halves-
If the park is "fat", we cut it vertically... If the park is "tall",
we cut it horizontally. Next, we calculate the surface area of
each side- Using the ratio of surface areas, we can now
randomly break our picnickers into two populations, one for
each side.

We keep doing this until every person has their own space-
Here's the code that makes it work:

http://lisperati.com/haskell/ht7.html

 let boundingRect :: [Polygon] -> (Float,Float,Float,Float)
 boundingRect p = (minimum xs,minimum ys,maximum xs,maximum ys)
 where xs = map fst $ concat p
 ys = map snd $ concat p

 let halveTriangles :: Int -> [Polygon] -> ([Polygon],[Polygon])
 halveTriangles n p = let (l,t,r,b) = boundingRect p
 f = fromIntegral n
 h = fromIntegral $ div n 2
 in if r-l > b-t
 then sliceX ((r*h+l*(f-h))/f) p
 else sliceY ((b*h+t*(f-h))/f) p

 let distance :: Point -> Point -> Float
 distance p1 p2 = sqrt (deltax*deltax+deltay*deltay)
 where deltax = (fst p1)-(fst p2)
 deltay = (snd p1)-(snd p2)

 let area :: Polygon -> Float
 area [a,b,c] = let x = distance a b
 y = distance b c
 z = distance c a
 s = (x+y+z)/2
 in sqrt (s*(s-x)*(s-y)*(s-z))

 let allocatePeople :: Int -> [Polygon] -> [[Polygon]]
 allocatePeople 0 t = []
 allocatePeople 1 t = [t]
 allocatePeople n t = let (t1,t2) = halveTriangles n t
 a1 = sum $ map area t1
 a2 = sum $ map area t2
 f = round $ (fromIntegral n)*a1/(a1+a2)
 in (allocatePeople f t1)++(allocatePeople (n-f) t2)

 let lots = allocatePeople (length people) triangles

 writeFile "tut4.svg" $ writePolygons $ concat $ zipWith ($) (cycle rainbow) lots

Here's what tut4.svg looks like- Every picnicgoer get
their own picnic lot, of a decent size and shape:

The halveTriangles function in this code snippet takes a
count of the number of picnic attendees (for the block of land
currently being allocated) and cuts the park roughly in half,
based on its bounding rectangle. I say "roughly", because we
would only want to cut the park exactly in half if the number
of people is even- If its odd, then an even cut can be very
unfair- Imagine if there were three people left- In that case,
an even cut on a rectangular lot would force two of the
people to share a single half... It's much smarter if we cut
slightly off-center when there's an odd number of people,
then it'll be more likely that everyone will get their fair share.
The halveTriangles function does the math for this- It
also compares the length and width of the lot to decide
whether a horizontal or vertical cut would lead to "squarer"
lots.

The other important function is the allocatePeople function-
This is basically the "land commissioner" of this algorithm-
It's the function that recursively cuts things into smaller and
smaller pieces, and divies up the land chunks to subsets of
the people, by comparing land area (via the area function,
which uses Heron's Law) against the number of people. In the
end, everyone gets a pretty fair piece.

What's good about this code?

This kind of code is perfect for a functional programming
language, like Haskell- All we're doing is successively
churning through all of our park land and handing off to
people, something that is easily captured using the recursive

http://en.wikipedia.org/wiki/Heron's_formula

allocatePeople function.

Another cool feature of this code is that it colors all the land
chunks using a rainbow of colors- We do this by converting
our rainbow of colors into an infinitely repeating rainbow
of colors using the cycle function, and then we write a little
esoteric code that will call every successive rainbow color
function (remember, rainbow consisted of a list of color-
applying functions) to make a rainbow-colored map of park
lots.

What's bad about this code?

First of all, every time we need to check the land area for a
region of the park we're recalculating it from scratch- Since
this is done over and over again for the same pieces as the
park is recursively subdivided, a lot of computrons are being
wasted. A better version would "remember" previous triangle
areas using memoization.

A second problem with this land subdivision algorithm is that
it isn't mathematically perfect... It's just a heuristic: If you
look at the final map, you can see small areas that are
missing/wasted in the end- You may also be able to come up
with certain degenerate park shapes that could break the
algorithm altogether. Luckily, here in Washington DC we
don't have no stinkin' degenerately shaped parks... though I
can't vouch for Baltimore. (Just Kidding)

http://www.haskell.org/haskellwiki/Memoization

NEXT

Making Sure No One Sits in The Middle of a Walkway
Once we have our equal-area lots determined, we could
ideally just stick each picnic blanket right in the middle of the
lot. However, even though most lots will be square-ish in
shape, given that the original shapes can have walkways and
stuff, we'll want to make sure that a lot with a walkway in it
doesn't have the center in a walkway. Here's the code that
finds a smarter center and draws a dot in it:

 let findLotCenter :: [Polygon] -> Point
 findLotCenter p = let (l,t,r,b) = boundingRect p
 m@(x,y) = ((r+l)/2,(b+t)/2)
 (lh,rh) = sliceX x p
 (th,bh) = sliceY y $ lh ++ rh
 centerOrder p1 p2 = compare (distance p1 m) (distance
p2 m)
 in minimumBy (comparing $ distance m) $ concat $ th ++ bh

 let makeDot :: Point -> Polygon
 makeDot (x,y) = [(x-2,y-2),(x+2,y-2),(x+2,y+2),(x-2,y+2)]

 let centers = map findLotCenter lots

 let spots = blue $ map makeDot centers

 writeFile "tut5.svg" $ writePolygons $ (green park) ++ spots

http://lisperati.com/haskell/ht8.html

Here's what tut5.svg looks like:

The trick in the findLotCenter is to use our old sliceX
and sliceY functions to make one more "plus-sign" cut and
then pick the central-most vertex from the resulting triangles.

NEXT

Calculating the Neighbors For Every Picnic Spot

We're going to be finding an optimal placement of our
picnickers using simulated annealing. This means, all the
picnickers are going to "run around" like crazy on the picnic
map and when they find people they like, they're going to
move slower and "crystalize"... It will be as if the picnickers
are molecules in a beaker that are slowly forming a crystal.

In the process of simulating this, we'll need to know what the
neighboring spots are for every picnic spot on the map- We'll
need to know for two reasons: First, once we start putting
people in the spots, we'll need a way to tell how well they'll
like their neighbors to make them slow down to crystalize.
Second, while all the picnickers are randomly "bouncing
around" in the park, we need to know what spots the can
"bounce into" next. Here is some code that calculates
neighbors:

 let shortestLinks :: Int -> [Link] -> [Link]
 shortestLinks n = (take n).(sortBy $ comparing linkLength)
 where linkLength [a,b] = distance a b

 let sittingNeighbors :: Int -> [Point] -> [Link]

http://lisperati.com/haskell/ht9.html

 sittingNeighbors n p = nub $ shortestLinks (n * (length p)) [[a,b] | a <- p,
b <- p, a /= b]

 let sitting = sittingNeighbors 4 centers

 writeFile "tut6.svg" $ writePolygons $ (green park) ++ spots ++ (red sitting)

Here's what the resulting tut6.svg file will look like:

The way neighbors are determined is to simply check every
possible picnic spot pair, sort them, and select the shortest.
Naturally, this means that centrally-located spots will have
more neighbors (and would probably fetch top dollar, if it
wasn't for this $#&@! real estate market right now...) while
the edge spots will have less- Which actually nicely handles
the cases of outliers in the picnicmob questionaire... If you
end up in a corner of the park on picnicmob.org you're
probably some kind of weirdo. ...Uhm... Wait... I mean... it's
probably just coincidence, really- forget I said that...

What's good about this code?

If you look at the sittingNeighbors function (which
builds all possible spot pairs and sorts 'em) you see
something in square brackets []... This is a neat feature in
Haskell called a list comprehension... In this example, it reads
as "For the cartesian products of all spots, represented as
spots a and b, where those spots are not identical, return a the
list of a-b pairs". Since lists are so central to Haskell, being
able to write stuff that generates lists in this fashion allows
some algorithms to be expressed very clearly and succinctly.

What's Bad About This Code?

Somewhere, deep in the brain of every programmer, is a
neuron that has only one role in life: Whenever a sound is
recorded by the hair cells of the ear that sounds like
"Cartesian Product", this neuron will dump unimaginable
quantities of neurotransmitters at the nodes of other neurons,
that translate into the neuron-equivalent of "Oh my God!!
INEFFICIENCY ALARM RED!! All Neurons to full alert!
RUN RUN RUN!!!" Enough said.

Another problem, looking at the resulting map, is that this
sittingNeighbors function is prone to lead to
"islands"... this is fine if when we're measuring happiness
with neighbors when people are sitting (since people on other
sides of walkways aren't really that good for conversation,

anyway...) but is lousy for letting our molecule-people
bounce around- They'll never walk/bounce into the islands...
Which is why we need to define another function for
neighbors... you can probably guess what it'll be called...

NEXT

Finding "Walkable" Neighbors
This function is just a variant of the last one that just make sure at least four of a spot's nearby
nodes are represented in the list of neighbor links:

 let walkingNeighbors :: Int -> [Point] -> [Link]
 walkingNeighbors n l = nub $ concatMap myNeighbors l
 where myNeighbors :: Point -> [Link]
 myNeighbors p = shortestLinks n [sort [p,c] | c <- l, p /= c]

 let walking = walkingNeighbors 4 centers

 writeFile "tut7.svg" $ writePolygons $ (green park) ++ spots ++ (red walking)

Note that with this function, the islands are now more like peninsulas (or perhaps jetties... or maybe
enclaves would be more appropriate... definitely not buttes, though...) This is the function we'll use
for "walking around".

NEXT

http://lisperati.com/haskell/ht10.html

On your mark...

Let's place people in their starting position now and draw a
pretty map showing people's happiness at the start... Here's
the code for this:

 let starting_placement = zip centers people

 let mismatches :: Person -> Person -> Int
 mismatches a b = length $ filter (uncurry (/=)) $ zip a b

 let similarityColor :: Person -> Person -> Color
 similarityColor p1 p2 = let m = mismatches p1 p2
 h = div (length p1) 2
 d = 30 * (abs (h - m))
 b = max 0 (255-d)
 o = min d 255
 in if m < h
 then (0,o,b)
 else (o,0,b)

 let findPerson :: Placement -> Point -> Person
 findPerson a p | Just (_,e) <- find ((== p).fst) a = e

 let similarityLine :: Placement -> Link -> (Color,Polygon)
 similarityLine l [p1,p2] = (similarityColor (findPerson l p1) (findPerson l
p2),[p1,p2])

 writeFile "tut8.svg" $ writePolygons $ map (similarityLine starting_placement)
sitting

Here's what tut8.svg looks like:

The only really important function in this block of code is the
first line that calculates the starting_placement... This
is just a zipped together list of the lot centers and people
into spot-people pairs. The rest of the code is just for the eye
candy...

The color of the lines tells you how well two neighbors get
along... The similarityColor function is a little kludge
that creates a nice color from red to blue, depending on how
compatible two people are (as usual in Haskell, the type
signature of Person>Person>Color is pretty much a
dead give-away...)

NEXT

Get Set...

http://lisperati.com/haskell/ht12.html

Next, we need to define our four simulated annealing functions... In the left
corner, picnicEnergy tells us the overall happiness of our picnic
population... smaller, low energy values mean greater happiness. In the right
corner, picnicMotion swaps two neighbors randomly to cause motion. In
the front corner, (This is a tag-team match) picnicTemperature gives the
current temperature: We want to start hot, then cool things down so that our
picnic crystalizes in a controlled manner. And finally, in the back,
picnicTransitionProbability takes the current temperature and the energy of
two states and calculates the likelihood a transition into the new state will
occur. For more info, consult you know what...

 let picnicEnergy :: [Link] -> EnergyFunction Placement
 picnicEnergy l a = sum $ map linkEnergy l
 where linkEnergy :: Link -> Int
 linkEnergy [p1,p2] = mismatches (findPerson a p1) (findPerson a
p2)

 let picnicMotion :: [Link] -> MotionFunction Placement
 picnicMotion l r a = let (n,r2) = randomR (0,(length l)-1) r
 [p1,p2] = l!!n
 in (r2,(p1,findPerson a p2):(p2,findPerson a p1):
(filter (not.((flip elem) [p1,p2]).fst) a))

 let picnicTemperature :: TemperatureFunction
 picnicTemperature m c = 50.0 * (exp (0.0 - (5.0 * ((fromIntegral c) /
(fromIntegral m)))))

http://en.wikipedia.org/wiki/Simulated_annealing

 let picnicTransitionalProbability :: TransitionProbabilityFunction
 picnicTransitionalProbability e1 e2 t = exp ((fromIntegral (e1 - e2)) / t)

 let annealing_time = 500

 putStr "starting energy: "
 print $ picnicEnergy sitting starting_placement

 putStr "starting temperature: "
 print $ picnicTemperature annealing_time annealing_time

When we run the program with this new addition, We'll now
get some info on the picnic starting positions:

> runHaskell tutorial.hs

Hello World! Let's have a picnic!
Number of people coming:
200
starting energy: 16010
starting temperature: 0.33689734

What's Good About This Code?

When it came to the four simulated annealing functions, it
was very easy to take the text from the wikipedia, generically
translate the types of these functions into generic haskell
types, and then create instances of these functions concretely
defined for our picnic-organizing needs. This really shows
the power of Haskell's highly refined support for declaring
and manipulating types.

What's Bad About this Code?

Well, these four functions are going to be the bread and butter
of our this program- Probably, about 99% of CPU time will
be spent in this little bit of code... Consequently, every little
inefficiency in this code will hurt performance hundredfold...
And boy, is this code inefficient: Because we're storing
everything in lists, it means that any function doing a search,
such as findPerson, will be inefficient to the point of
absurdity... Even worse is the fact that picnicEnergy checks
the happiness of the entire picnicker population, even though

only two people move at any one time and does so in the
most tedious way by checking every questionaire question on
every person against neighbors over and over and over again,
instead of precalculating the compatibility of two people
ahead of time.

These things can be fixed relatively easily by ugli-fying the
code with extra parameters holding precalculated/memoized
info and using GHC Maps, HashMaps, and Arrays instead
of POLs (plain old lists, to possible coin a new term- 'pwned',
watch your back... a new kid's in town!) in the appropriate
places. In fact, the "real" version of this annealer I'm using
for my picnicmob calculations does all this, but ain't exactly
prime tutorial material. However, it runs well over a thousand
times faster than this simplified version :-)

NEXT

GO!!!

Alright! now we're finally anealling us picnic! here's our
main "loop":

 let anneal_tick :: MotionFunction a -> TransitionProbabilityFunction ->
EnergyFunction a -> Float -> (StdGen,a) -> (StdGen,a)
 anneal_tick mf tpf ef t (r,p) = let (r2,p2) = mf r p
 (n ,r3) = random r2
 in (r3,
 if n < tpf (ef p) (ef p2) t
 then p2
 else p)

 let anneal :: EnergyFunction a -> MotionFunction a ->

http://lisperati.com/haskell/ht13.html

TransitionProbabilityFunction -> TemperatureFunction -> Int -> StdGen -> a -> a
 anneal ef mf tpf tf m r s = snd $ foldl' (flip (anneal_tick mf tpf ef))
(r,s) (map (tf m) [0..m])

 random_generator <- getStdGen

 putStr "starting annealing... "
 putStr "number of annealing steps: "
 print annealing_time

 let ideal_placement = anneal
 (picnicEnergy sitting)
 (picnicMotion walking)
 picnicTransitionalProbability
 picnicTemperature
 annealing_time
 random_generator
 starting_placement

 writeFile "tut9.svg" $ writePolygons $ map (similarityLine ideal_placement)
sitting

 putStr "Done!\nfinal energy: "
 print $ picnicEnergy sitting ideal_placement
 putStr "final temperature: "
 print $ picnicTemperature 0 annealing_time

Now, if we run our the completed program, we'll calculate
ourselves low energy, crystallized picnic exactly as we
wanted: (be patient it'll might take 5 minutes for a result...)

> runHaskell tutorial.hs

Hello World! Let's have a picnic!
Number of people coming: 200
starting energy: 16010
starting temperature: 0.33689734
starting annealing... number of annealing steps: 500
Done!
final energy: 15010
final temperature: 0.0

Now let's look at our crowning achievement, tut9.svg-
Check out the bluer color, compared to the previous picture,
of an annealed picnic:

Before

 After

Here's what it looks like with a much longer annealing time:

WooHoo! Now let's figure out what this final piece of code is
all about...

First, we have the anneal_tick function, which handles a
single moment in time for our annealing... It needs to be
handed three of the four annealing functions... Instead of the

fourth one, TemperatureFunction, it is handed just the
temperature at that moment (the Float), since at any given
time the temperature is just a single number. The last thing
passed into this function is the current placement of our
"atoms", as well as a random number source, StdGen... In
Haskell, you can't just pull random numbers out of "thin air"
as you can in almost any other programming language known
to mankind... Remember, doing unpredictable stuff that isn't
specified explicitly in a function's type signature is a Haskell
no-no...

The main "loop" of our program is in the function anneal...
I put "loop" in quotes because Haskellers don't use loops,
they use folds... A fold is kind of like a map function:
Whereas map returns a list created by thrashing through a
starting list and applying a function to each member, folds
return a single item, created by folding together all the items
in a list into a single result value- There are two main folding
functions, foldl and foldr, which fold from the left and
right end of the starting list, respectively. To learn more about
the different types of folds, check the HaskellWiki.

Finally, we code generates the ideal_placement by
glueing together all our building block functions to generate
our final result- And that's the end of our tutorial program!

Of course, the total number of annealing steps we're doing
(500) is not enough for a very good annealing- You'd need to
run a few million steps and use GHC to compile the program
to machine language to get an optimal result- Here's how
you'd compile it:

ghc -O2 -fglasgow-exts -optc-march=pentium4 -optc-O2 -optc-mfpmath=sse -optc-msse2
--make picnic.hs

What's Good About this Code?

Once again, this shows how haskell's typing system let's us
modularize like a charm: Note that the word "picnic" or
anything else picnic-related does not appear in either the
anneal_tick or the anneal function... This code, which
is the very heart of this program, is completely unpolluted by
our problem domain: If you were a biochemist simulating
artery clot annealing, you could use this exact same code to
run your simulations. If you're a nuclear chemist simulating
isotope doodads in a hydrogen bomb, you could use this
function. (Note to nuclear chemists- If you're reading this

http://www.haskell.org/haskellwiki/Fold

tutorial, and copy/pasting my code, then we're in big
trouble...)

As this example shows, Haskell's powerful typing system
allows us to prevent leakage from different sections of code
in ways almost no other language can match- Whether you're
worried about leaking randomness, IO operations, picnic
references, etc. etc. Haskell's type system offers the ultimate
in "code leakage" protection!

What's Bad About this Code?

In conclusion of my tutorial, I want to wander off a bit into
the realm of armchair programming philosophy...

I, like many others involved in Haskell, believe very strongly
that the central ideas in the Haskell language represent the
future of programming- It's seems pretty inevitable that
Haskell-like will have a huge impact on the future... But,
alas, Haskell still has one unavoidable weakness that might
be the fly in the ointment of the inevitable Haskell utopia of
the future- We can see it clearly in the code above where this
weakness comes in to play...

Several times in this tutorial I have talked about how easy it
is to take algorithms or math concepts and effortlessly
translate them into elegant types and functions using the
elegance of the Haskell syntax and typing system. One set of
functions, however, were not so easy to translate: the

anneal_tick and anneal functions. The source of these
functions was the pseudo-code in the wikipedia article we've
been using... They're just a wee-bit more obfuscated than one
would really want, in my opinion. It's only a little bit
obfuscated, but still makes me unhappy...

The reason for this is that this pseudo code is simulating a
physical world that changes slightly over time: This is a
fundamental property of our universe: Things only change a
little bit from one moment to the next. A great description
of this noteworthy property of our world can be found in this
Whitepaper which discusses a pretty cool take on A.I. that is
being explored by Jeff Hawkins and Dileep George at a
company named Numenta- Their software is all about how
our minds exploit this property in achieving intelligence...

Because the physical world changes only slightly from
moment to moment, it means that languages that can
comfortably mutate large data structures in targeted ways will
always have a role to play in real-world software- The "real
world" usually just doesn't work the way Haskell, and other
functional languages would prefer it did: Haskell preferred
that at every moment in time, a "new universe" would look at
the "old universe" and would rebuild itself, from scratch,
from what it saw in the past, with radical changes happening
all the time.

Despite its many advantages, I humbly suggest, therefore,
that in the future there will continue to be a rift between the
"imperative" and "functional" camps of programming, until
someone comes up with a truly robust way of uniting these
two camps- And I think that some profound programming
discoveries still need to be made in the future before this
problem is really resolved- I get the feeling it's just not good
enough to wave at the problem and say "Monads".

Back To lisperati.com

http://lisperati.com/
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://www.numenta.com/Numenta_HTM_Concepts.pdf
http://en.wikipedia.org/wiki/Simulated_annealing

	Hi everyone,
welcome to my Haskell tutorial!
	Alright- So what do we know about the people at our picnic?
	IMPORTANT: Before starting to read this next paragraph, put your fingers in both ears and chant "Lalalalala I can't hear you I can't hear you lalalala..."
	OK, you can take your fingers out of your ears and stop chanting now. You can thank me later by email for protecting you from a tragic downward spiral in your sanity that would be inevitable as you try to fully understand the meaning continued in the concepts mentioned in the aforementioned paragraph.
	Let's Draw Us a Purty Picture
	The Insane coolness of
colorize = zip.repeat
	Alright already!!! Can we finally start to actually organize a picnic???

